Abstract
Quantitative analyses of garnet-bearing epidote amphibolite (hereafter garnet amphibolite) from the Funaokayama unit, western Kii Peninsula of the Sanbagawa belt reveal a previously unrecognized high-grade part of the Sanbagawa metamorphism. Petrographic observations suggest that the garnet amphibolite underwent three stages of metamorphism (M1, M2 and M3). Records of M1 are preserved as syn-tectonic prograde-zoned garnet and its inclusions. Pseudosection modeling reproduces the observed M1 assemblage garnet + amphibolite + epidote + phengite + quartz and the growth zoning of garnet records the pressure (P)-temperature (T) evolution from 0.8 GPa, 570 °C to 1.3 GPa, 590 °C. Therefore, this garnet growth and associated deformation (D1) took place during subduction up to eclogite facies conditions. The garnet rim compositions and inclusions of epidote, titanite, rutile and quartz (5titanite + 2clinozoisite = 5rutile + 3grossular + 2quartz + H2O) give consistent peak-P estimates of 1.3-1.9 GPa. The garnet contains quartz inclusions retaining residual pressures of up to ∼ 0.7 GPa, which is as high as the values reported in well-characterized eclogite samples in central Shikoku. The inferred peak-P conditions in the eclogite facies is further supported by the occurrence of aragonite in associated pelitic schist. The assemblage hornblende + epidote + titanite + quartz + albite in the matrix and its equilibrium conditions of ∼ 0.8 GPa, 580 °C suggest decompression to the epidote-amphibolite facies (M2). The M2 minerals locally show replacement by the mineral assemblage actinolite + epidote + chlorite + titanite + calcite + quartz + albite, suggesting a partial re-equilibration in the greenschist facies (M3). M2 and M3 are synchronous with the main phase of ductile deformation during exhumation (D2). Despite the absence of the omphacite + quartz assemblage, it is likely that eclogite facies metamorphism in the Sanbagawa belt can be extended to western Kii Peninsula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Mineralogical and Petrological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.