Abstract

Abstract The effect of rare-earth metals on diamond crystallization processes in the Mg-REM-C system (REM = Sc, Y, La, Pr, Nd, Dy, and Yb) was studied at 7.8 GPa and 1800 °C. It was found that the rare-earth metals added in an amount of 10 wt% had different effects on diamond crystallization. Sc, La, Pr, and Dy, only slightly affected the intensity of diamond synthesis as compared to the undoped Mg-C system. Yb, Y, and Nd significantly reduced the degree of conversion of graphite to diamond. The effect of higher contents of rare-earth metals on diamond crystallization was studied for the Mg-Pr-C system with a Pr content varied from 0 to 80 wt%. It was found that with increasing Pr content the degree of the graphite-to-diamond conversion decreased and at 80 wt% Pr diamond synthesis was terminated and mass crystallization of metastable graphite took place. The morphology of diamonds synthesized in the Mg-REM-C system was determined by the {1 0 0} faces. The surface microrelief of the faces was connected with crystal defectiveness and characterized by specific features, depending on the system composition and the degree of graphite-to-diamond conversion. From the spectroscopic characterization it was found that similarly to their action on diamond synthesis, different REM additives produced different effects on photoluminescence characteristics of the synthesized diamonds. Those rare-earth metals which only slightly affected diamond crystallization, showed no significant effects on the PL spectra relative to the undoped Mg-C system. Diamonds produced with Y, Nd and Yb additives showed a number of new photoluminescence features, which could be related to defects inhibiting diamond crystal growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.