Abstract

The transition metal monopnictide family of Weyl semimetals recently has been shown to exhibit anomalously strong second-order optical nonlinearity, which is theoretically attributed to a highly asymmetric polarization distribution induced by their polar structure. We experimentally test this hypothesis by measuring optical second harmonic generation (SHG) from TaAs across a pressure-tuned polar-to-nonpolar structural phase transition. Despite the high-pressure structure remaining noncentrosymmetric, the SHG yield is reduced by more than 60% by 20 GPa as compared to the ambient pressure value. By examining the pressure dependence of distinct groups of SHG susceptibility tensor elements, we find that the yield is primarily controlled by a single element that governs the response along the polar axis. Our results confirm a connection between the polar axis and the giant optical nonlinearity of Weyl semimetals and demonstrate pressure as a means to tune this effect in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.