Abstract

In this study, we use molecular dynamics (MD) simulation to study pressure-driven CO2 and CH4 flows and their slippage behaviors in β-cristobalite mesopores. The result illustrates that both CO2 and CH4 have an apparent adsorption layer on pore surface. However, significant differences in gas slippage are observed: CH4 flow shows considerable slippage, while it is negligible for CO2 flow. This disparity is attributed to the collective effect of gas molecular configurations and surface structure. The linear molecular structure of CO2 allows it to align perpendicular to the surface, even penetrating into the surface. Notably, the perpendicular orientation of CO2 molecules is energetically favored near the center of the equilateral triangle formed by adjacent oxygen atoms on β-cristobalite surface. Conversely, the symmetric molecular structure of CH4, coupled with its larger size, prevents its penetration into pore surfaces. Therefore, despite smooth crystalline surfaces, CO2 topological accessible plane is much more curved than that of CH4. Consequently, CO2 displays hesitating motions undergoing rotational movements, which significantly hinders its slippage. This study highlights the collective influences of gas molecular characteristics and surface structure on gas slippage, affording important insights into gas sequestration and the development of functional materials for gas separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.