Abstract

The emergence of new semiconductor devices puts forward higher requirements for packaging technology. Sintered silver technology has gradually developed into critical packaging technology in silicon carbide power module packaging due to its good heat dissipation performance and reliability. However, high sintering drive requirements, low sintering densification, and high thermal-mechanical stresses limit the application of sintered silver technology for large-area bonding. In this study, the high-pressure-assisted (≥10 MPa) large-area sintered-silver interconnection process between a substrate and baseplate was discussed. C-scan acoustic microscopy, warpage testing, and microanalysis were used to analyze the effects of drying methods, sintering pressure, and holding time on the sintered joints, and thermal fatigue reliability tests were conducted on large-area sintered silver joints. The results demonstrated that the quality of large-area sintered joints obtained via open-face convective drying is higher than that via close-face convective drying. Combining the performance of sintered joints and productivity, the recommended process condition is determined as follows: open-face convective drying, sintering temperature of 250 °C, sintering pressure of 15 MPa, and holding time of 5 min. Large-area sintered joints have outstanding reliability, with slight delamination of the sintered layer at the corners and no cracking after 1000 cycles of temperature cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.