Abstract
AbstractHigh pressure provides an efficient way of controlling the electronic properties of semiconductor nanostructures. We use pressure to tune electronic coupling in stacks of self‐assembled quantum dots (SAQDs). The coupling occurs as soon as the distance and the height of the barriers between the dots are sufficiently small to permit interaction between the wavefunctions of electrons in adjacent dots. We demonstrate experimental evidence that application of pressure reduces and may quench the coupling. This happens because, under pressure, the inter‐dot barriers become higher and hence less transparent for electron wavefunctions. The effect was revealed by means of photoluminescence spectroscopy and confirmed by theoretical modelling. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.