Abstract

BackgroundChanges in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. These changes are often related to phenotypic effects such as genetic disorders or novel pathogen resistance. The increasing availability of genome sequences through the application of next-generation massive sequencing technologies has allowed the study of genomic polymorphisms at both the interspecific and intraspecific levels, thus helping to understand how species adapt to changing environments through genome variability.ResultsData on gene presence/absence variation (PAV) in melon was obtained by resequencing a cultivated accession and an old-relative melon variety, and using previously obtained resequencing data from three other melon cultivars, among them DHL92, on which the current draft melon genome sequence is based. A total of 1,697 PAV events were detected, involving 4.4% of the predicted melon gene complement. In all, an average 1.5% of genes were absent from each analyzed cultivar as compared to the DHL92 reference genome. The most populated functional category among the 304 PAV genes of known function was that of stress response proteins (30% of all classified PAVs). Our results suggest that genes from multi-copy families are five times more likely to be affected by PAV than singleton genes. Also, the chance of genes present in the genome in tandem arrays being affected by PAV is double that of isolated genes, with PAV genes tending to be in longer clusters. The highest concentration of PAV events detected in the melon genome was found in a 1.1 Mb region of linkage group V, which also shows the highest density of melon stress-response genes. In particular, this region contains the longest continuous gene-containing PAV sequence so far identified in melon.ConclusionsThe first genome-wide report of PAV variation among several melon cultivars is presented here. Multi-copy and clustered genes, especially those with putative stress-response functions, were found to be particularly affected by PAV polymorphisms. As cucurbits are known to possess a significantly lower number of defense-related genes compared to other plant species, PAV variation may play an important role in generating new pathogen resistances at the subspecies level. In addition, these results show the limitations of single reference genome sequences as the only basis for characterization and cloning of resistance genes.

Highlights

  • Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes

  • Genome resequencing of two Cucumis melo varieties To study gene content variations that could be primarily responsible for at least part of the wide phenotypic diversity of melon, two distant melon varieties were chosen for further genome sequencing

  • This article presents the quantification of presence/absence variation (PAV) in the genome of melon by comparing the published reference genome to four additional melon cultivars

Read more

Summary

Introduction

Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. The genome sequences of different plant species are being published These include species used in genetic or molecular analysis, such as Arabidopsis thaliana and Brachypodium dystachion, of interest for their evolutionary relation with other plants, or crop plants of interest in agriculture. In this respect one of the questions that can be addressed at this moment through resequencing of the appropriate varieties is the genomic variability of plant species that occurs at both interspecific and intraspecific levels. These data may help to understand how plant species adapt to changing environments including domestication

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call