Abstract

In this work, we propose the integration of a bank of Discrete Generalized Proportional Integral Observers (DGPIO) within an Interacting Multiple Model (IMM) structure in order to improve the precision of visual-tracking tasks. Applications such as visual servoing, robotic assisted surgery and optronic weapon systems require accurate and high-precision measurements provided by real-time visual-tracking systems. In this case, the DGPIO-Bank was designed using two kinematic models based in constant velocity (CV) and constant acceleration (CA) motion profiles. The main feature of the DGPIO-Bank is the active disturbance rejection (ADR) feature which reduces noise in the position signal of a moving object. The resultant algorithm uses a fusion of four important features: state interaction, Kalman filtering, active disturbance rejection and multiple models combination. For performance comparison, we evaluated our proposed IMM-DGPIO algorithm and other state of the art IMM algorithms. Experimental results show that our proposed strategy had the best performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.