Abstract
We improve by a factor of 4–20 the energy accuracy of the strongest soft X-ray transitions of Fe xvii ions by resonantly exciting them in an electron beam ion trap with a monochromatic beam at the P04 beamline of the PETRA III synchrotron facility. By simultaneously tracking instantaneous photon-energy fluctuations with a high-resolution photoelectron spectrometer, we minimize systematic uncertainties down to 10–15 meV, or velocity equivalent ±∼5 km s−1 in their rest energies, substantially improving our knowledge of this key astrophysical ion. Our large-scale configuration-interaction computations include more than 4 million relativistic configurations and agree with the experiment at a level without precedent for a 10-electron system. Thereby, theoretical uncertainties for interelectronic correlations become far smaller than those of quantum electrodynamics (QED) corrections. The present QED benchmark strengthens our trust in future calculations of many other complex atomic ions of interest to astrophysics, plasma physics, and the development of optical clocks with highly charged ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.