Abstract

To improve the estimation accuracy, a novel time delay estimation (TDE) method based on the closed-form offset compensation is proposed. Firstly, we use the generalized cross-correlation with phase transform (GCC-PHAT) method to obtain the initial TDE. Secondly, a signal model using normalized cross spectrum is established, and the noise subspace is extracted by eigenvalue decomposition (EVD) of covariance matrix. Using the orthogonal relation between the steering vector and the noise subspace, the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE. Finally, the offsets are compensated via simple least squares (LS). Compared to other state-of-the-art methods, the proposed method significantly reduces the computational complexity and achieves better estimation performance. Experiments on both simulation and real-world data verify the efficiency of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.