Abstract

AbstractTriangulation-based range sensors, e.g. laser line scanners, are used for high-precision geometrical acquisition of free-form surfaces, for reverse engineering tasks or quality management. In contrast to classical tactile measuring devices, these scanners generate a great amount of 3D-points in a short period of time and enable the inspection of soft materials. However, for accurate measurements, a number of aspects have to be considered to minimize measurement uncertainties. This study outlines possible sources of uncertainties during the measurement process regarding the scanner warm-up, the impact of laser power and exposure time as well as scanner’s reaction to areas of discontinuity, e.g. edges. All experiments were performed using a fixed scanner position to avoid effects resulting from imaging geometry. The results show a significant dependence of measurement accuracy on the correct adaption of exposure time as a function of surface reflectivity and laser power. Additionally, it is illustrated that surface structure as well as edges can cause significant systematic uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.