Abstract

The excited states of unstable ^{20}O were investigated via γ-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined. Various chiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states, along with a standard USDB interaction, were compared with the experimentally obtained data. Such a comparison for a large set of γ-ray transition probabilities with the valence space in medium similarity renormalization group abinitio calculations was performed for the first time in a nucleus far from stability. It was shown that the abinitio approaches using chiral effective field theory forces are challenged by detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilities were found to be a very constraining test of the performance of the abinitio models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call