Abstract

In order to improve the performance of the high-speed brushless direct current motor drives, a novel high-precision sensorless drive has been developed. It is well known that the inevitable voltage pulses, which are generated during the commutation periods, will impact the rotor position detecting accuracy, and further impact the performance of the overall sensorless drive, especially in the higher speed range or under the heavier load conditions. For this reason, the active compensation method based on the virtual third harmonic back electromotive force incorporating the SFF-SOGI-PLL (synchronic-frequency filter incorporating the second-order generalized integrator based phase-locked loop) is proposed to precise detect the commutation points for sensorless drive. An experimental driveline system used for testing the electrical performance of the developed magnetically suspended motor is built. The mathematical analysis and the comparable experimental results have been shown to validate the effectiveness of the proposed sensorless drive algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.