Abstract

We present a new lattice QCD analysis of heavy-quark pseudoscalar-pseudoscalar correlators, using gluon configurations from the MILC collaboration that include vacuum polarization from $u$, $d$, $s$ and $c$~quarks($n_f=4$). We extract new values for the QCD coupling and for the $c$ quark's $\overline{\mathrm{MS}}$ mass: $\alpha_{\overline{\mathrm{MS}}}(M_Z,n_f=5) = 0.11822(74)$ and $m_c(3\mathrm{GeV}, n_f=4) = 0.9851(63)$GeV. These agree well with our earlier simulations using $n_f=3$ sea quarks, vindicating the perturbative treatment of $c$ quarks in that analysis. We also obtain a new nonperturbative result for the ratio of $c$~and $s$~quark masses: $m_c/m_s=11.652(65)$. This ratio implies $m_s(2\,\mathrm{GeV}, n_f=3)=93.6(8)$MeV when it is combined with our new~$c$~mass. Combining $m_c/m_s$ with our earlier $m_b/m_c$ gives $m_b/m_s=52.55(55)$, which is several standard deviations (but only 4%) away from the Georgi-Jarlskop prediction from certain GUTs. Finally we obtain an $n_f=4$ estimate for $m_b/m_c=4.528(54)$ which agrees well with our earlier $n_f=3$ result. The new ratio implies~$m_b(m_b,n_f=5)=4.162(48)$GeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.