Abstract
A PLS-based quality prediction method is proposed for batch processes using two-dimensional extended windows. To realize the adoption of information in the directions of sampling time and batch, a newly defined region of support (ROS), called the k-i-back-extended region of support (KIBROS), is proposed; it establishes an extended window by adding two regions of data to the traditional ROS to include all possible important data for quality prediction. Based on the new ROS, extended windows are established, and different models are proposed using the extended windows for batch process quality prediction. Furthermore, using the typical injection molding batch process as an example, the proposed quality prediction method is experimentally verified, proving that the proposed methods have higher prediction accuracy than the traditional method and that the prediction stability is also improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.