Abstract
At present, aluminum-based optical payloads are widely used in the aviation and aerospace field, and the demand for aluminum mirrors has become increasingly urgent in the visible light region. The main processing of an aluminum alloy mirror involves single-point diamond turning followed by a combined polishing process. Among these processes, magnetorheological finishing (MRF) is an important method for improving a surface figure. During the MRF process, excessive impurity contaminants are introduced into the surface of the aluminum mirror, thereby reducing surface reflectivity. In this paper, theoretical analysis and time-of-flight secondary ion mass spectrometry depth profiling were used to obtain the cause of pollution, and the process scheme of femtosecond laser cleaning was proposed. After verifying the feasibility, a new, to the best of our knowledge, process route was implemented on a Φ50mm aluminum mirror. Finally, the surface figure of RMS 0.022λ and the surface roughness of Ra 3.24 nm were obtained. In addition, reflectance in the visible light and near-infrared bands has increased by about 50%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.