Abstract

The decay path of the Hoyle state in ^{12}C (E_{x}=7.654 MeV) has been studied with the ^{14}N(d,α_{2})^{12}C(7.654) reaction induced at 10.5MeV. High resolution invariant mass spectroscopy techniques have allowed us to unambiguously disentangle direct and sequential decays of the state passing through the ground state of ^{8}Be. Thanks to the almost total absence of background and the attained resolution, a fully sequential decay contribution to the width of the state has been observed. The direct decay width is negligible, with an upper limit of 0.043% (95%C.L.). The precision of this result is about a factor 5 higher than previous studies. This has significant implications on nuclear structure, as it provides constraints to 3α cluster model calculations, where higher precision limits are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.