Abstract
We have proposed and implemented a novel scheme to obtain high-precision repetition rate stabilization for a polarization-maintaining mode-locked fiber laser. The essential technique lies in the periodic injection of electronically modulated optical pulses into a nonlinear amplifying loop mirror within the laser resonator. Thanks to the nonlinear cross-phase modulation effect, the injected pulses referenced to an external clock serves as a stable and precise timing trigger for an effective intensity modulator. Consequently, synchronous mode-locking can be initiated to output ultrafast pulses with a passively stabilized repetition rate. The capture range of the locking system reaches to a record of 1 mm, which enables a long-term stable operation over 15 hours without the need of temperature stabilization and vibration isolation. Meanwhile, the achieved standard deviation is as low as 100 μHz with a 1-s sample time, corresponding to a fluctuation instability of 5.0×10-12. Additionally, the repetition rate stabilization performance based on the passive synchronization has been systematically investigated by varying the average power, central wavelength and pulse duration of the optical injection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.