Abstract
Quantifying and analyzing licking behavior can offer valuable insights into fundamental neurobiological mechanisms controlling animal consummatory behaviors. Lickometers are typically based on electrical properties, a strategy that comes with limitations, including susceptibility to electrical interference and generation of electrical disturbances in electrophysiological measurements. While optical lickometers offer an alternative method to measure licks and quantify fluid intake in animals, they are prone to false readings and susceptibility to outside light sources. To overcome this problem, we propose a low-cost open-source lickometer that combines a restricted infrared beam defined by optical fibers, with a poke design that allows easy access to the tongue while limiting access of other body parts and external light sources. This device also includes features for detecting nose pokes and presenting visual cues during behavioral tasks. We provide validation experiments that demonstrate the optical lickometer's reliability, high-sensitivity and precision, and its application in a behavioral task, showcasing the potential of this tool to study lick microstructure in combination with other techniques, such as imaging of neural activity, in freely moving mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.