Abstract

This work presents a very simple yet effective way to obtain direct referencing of a quantum-cascade-laser at 4.3 μm to a near-IR frequency-comb. Precise tuning of the comb repetition-rate allows the quantum-cascade-laser to be scanned across absorption lines of a CO2 gaseous sample and line profiles to be acquired with extreme reproducibility and accuracy. By averaging over 50 acquisitions, line-centre frequencies are retrieved with an uncertainty of 30 kHz in a linear interaction regime. The extension of this methodology to other lines and molecules, by the use of widely tunable extended-cavity quantum-cascade-lasers, paves the way to a wide availability of high-quality and traceable spectroscopic data in the most crucial region for molecular detection and interrogation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.