Abstract

The sea surface temperature (SST) is a crucial parameter system in climate monitoring. Satellite remote sensing is currently the most common approach for measuring long-term and large-area sea surface temperatures. The SST data measured by the satellite radiometer include the sea surface skin temperature (SSTskin) at a depth of approximately 10 μm. Satellite remote sensing measurement data must be compared and validated with on-site measured data. There are various solutions for on-site measuring instruments; the essential components are usually infrared radiation sensors with radiation output. This paper uses an ordinary integrated infrared thermometer without a radiation output function to remotely measure the sea surface temperature to achieve a high-precision measurement. The scheme of integrating infrared thermometers to measure the sea surface temperature is investigated in this paper. Based on Planck’s formula, the bidirectional conversion relationship between temperature and radiation in a certain band is established. The experimental system introduced in this paper uses an integrated infrared thermometer to measure the small blackbody and the target in a cyclic measurement system. We combine it with the sea surface emissivity characteristics and eliminate the influence of sky background radiation on the sea surface to obtain the actual amount of radiation on the sea surface, from which we obtain the actual radiation amount on the sea surface. Accurate SST can be calculated from the actual amount of radiation at the sea surface. The temperature measurement accuracy can reach 0.1 K, allowing it to meet on-site temperature measurement requirements, as well as the comparison measurement requirements confirmed by satellite remote sensing on-site data. There are relatively few products available for sensors with a temperature measurement accuracy of 0.1 K on the market, and temperature measurement equipment with a temperature measurement accuracy of 0.1 K is relatively expensive. Cost is one of the important factors to consider when using in bulk, especially as global warming increases the need for ocean monitoring. The scheme proposed in this paper is beneficial to reduce the volume and weight of measuring instruments, reduce the cost, and promote the large-scale combined application of sea surface temperature change monitoring.

Highlights

  • To meet the requirements for the accuracy of satellite sea surface temperature (SST) data in climate data records, high-precision SST on-site measurement data are required to verify the satellite data [1–3]

  • The most representative infrared thermometers used in the world to measure sea surface temperature include the infrared sea surface temperature autonomous radiometer (ISAR), calibrated infrared in situ measurement (CIRMIS), scanning infrared sea surface temperature radiometer (SISTeR), marine-atmospheric emitted radiance interferometer (M-AERI), and so on [4–8]

  • A linear relationship is fit between the radiation and the value measured by the radiation sensor inside the blackbody, and the radiometer is calibrated to obtain the true sea surface temperature by this linear relationship [9,10]

Read more

Summary

Introduction

To meet the requirements for the accuracy of satellite SST data in climate data records, high-precision SST on-site measurement data are required to verify the satellite data [1–3]. The measurement scheme discussed in this paper adopts a different from the traditional scheme, using an inexpensive integrated infrared temperature sensor instead of an infrared radiometer. Through theoretical analysis and experimental verification, the real-time blackbody calibration scheme is adopted to improve the measurement accuracy of the integrated temperature sensor, from 0.5 to 0.1 K, which can better complete the measurement of SST. This precision can meet the temperature measurement requirements of environmental scientists, as well as satellite remote sensing field data verification requirements

Materials and Methods
Establish the Conversion Relationship between Temperature and Radiation Quantity
Principle of Measuring Sea Surface Temperature
Experiments and Performance Testing
Improvement of Performance Test Experiment
Discussion and Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call