Abstract

While the nuclear deformation in the region around Z = 40 and N = 60 has been studied in great detail, the possible onset of nuclear deformation in the isotopic chain of krypton (Z = 36) is still a subject of controversy. Here, we present a high-precision mass measurement of the neutron-rich nuclide 96Kr, as measured by the Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS) at TRIUMF’s Ion Trap for Atomic and Nuclear Science (TITAN). A statistical method, based on a hyper-exponentially modified Gaussian, has been employed to model the data. As such, the uncertainty introduced by overlapping peaks from beam contaminants was reduced and the mass excess of 96Kr determined to be -53097(57)keV. The capability of the method has been confirmed with measurements of the stable isotopic pair 40Ar/40Ca, in which a relative accuracy Δm/m of 3.5 ⋅ 10− 8 and a mass resolving power of more than 400000 were achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.