Abstract

Direct phase modulation is one of the most urgent and difficult issues in the terahertz research area. Here, we propose a new method employing a two-dimensional electron gas (2DEG) perturbation microstructure unit coupled to a transmission line to realize high-precision digital terahertz phase manipulation. We induce local perturbation resonances to manipulate the phase of guided terahertz waves. By controlling the electronic transport characteristics of the 2DEG using an external voltage, the strength of the perturbation can be manipulated, which affects the phase of the guided waves. This external control permits electronic manipulation of the phase of terahertz waves with high precision, as high as 2−5° in the frequency range 0.26–0.27 THz, with an average phase error of only 0.36°, corresponding to a timing error of only 4 fs. Critically, the average insertion loss is as low as 6.14 dB at 0.265 THz, with a low amplitude fluctuation of 0.5 dB, so the device offers near-ideal phase-only modulation. A terahertz phase modulator based on the switchable perturbation resonance in two-dimensional electron gas is demonstrated. Phase manipulation with precision ranging from 2° to 5° is obtained at frequencies in the range from 0.26 to 0.27 THz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call