Abstract

We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.9±3.0) MeV=(59.1±3.5) MeV, where the first error refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.