Abstract

The 2-d spin 1/2 Heisenberg antiferromagnet with exchange coupling $J$ is investigated on a periodic square lattice of spacing $a$ at very small temperatures using the loop-cluster algorithm. Monte Carlo data for the staggered and uniform susceptibilities are compared with analytic results obtained in the systematic low-energy effective field theory for the staggered magnetization order parameter. The low-energy parameters of the effective theory, i.e.\ the staggered magnetization density ${\cal M}_s = 0.30743(1)/a^2$, the spin stiffness $\rho_s = 0.18081(11) J$, and the spin wave velocity $c = 1.6586(3) J a$ are determined with very high precision. Our study may serve as a test case for the comparison of lattice QCD Monte Carlo data with analytic predictions of the chiral effective theory for pions and nucleons, which is vital for the quantitative understanding of the strong interaction at low energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.