Abstract

AbstractThis paper considers the problem of a three-axis flexible satellite attitude stabilisation subject to the vibration of flexible appendages and external environmental disturbances, which affect the rigid body motion. To solve this problem, a disturbance observer is proposed to estimate and thereby reject the flexible appendage vibration. Based on the H∞ and Linear Matrix Inequality (LMI) approach, a controller for spacecraft with flexible appendages is proposed to ensure robustness as well as attitude stability with high precision. Stability analysis of the overall closed-loop system is provided via the Lyapunov method. The simulation results of three-axis flexible spacecraft demonstrate the robustness and effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call