Abstract

AbstractThe earthquake swarm accompanying the January 2022 Hunga Tonga-Hunga Ha'apai (HTHH) volcanic eruption includes a large number of posteruptive moderate-magnitude seismic events and presents a unique opportunity to use remote monitoring methods to characterize and compare seismic activity with other historical caldera-forming eruptions. We compute improved epicentroid locations, magnitudes, and regional moment tensors of seismic events from this earthquake swarm using regional to teleseismic surface-wave cross correlation and waveform modeling. Precise relative locations of 91 seismic events derived from 59,047 intermediate-period Rayleigh- and Love-wave cross-correlation measurements collapse into a small area surrounding the volcano and exhibit a southeastern time-dependent migration. Regional moment tensors and observed waveforms indicate that these events have a similar mechanism and exhibit a strong positive compensated linear vector dipole component. Precise relative magnitudes agree with regional moment tensor moment magnitude (Mw) estimates while also showing that event sizes and frequency increase during the days after the eruption followed by a period of several weeks of less frequent seismicity of a similar size. The combined information from visual observation and early geologic models indicate that the observed seismicity may be the result of a complex series of events that occurred after the explosive eruption on 15 January, possibly involving rapid resupply of the magma chamber shortly after the eruption and additional faulting and instability in the following weeks. In addition, we identify and characterize an Mw 4.5 event five days before the paroxysmal explosion on 15 January, indicating that additional seismic events preceding the main eruption could have been identified with improved local monitoring. Our analysis of the HTHH eruption sequence demonstrates the value of potentially utilizing teleseismic surface-wave cross correlation and waveform modeling methods to assist in the detailed analysis of remote volcanic eruption sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.