Abstract

Recently, we have developed high precision carbon-interspaced antiscatter grids to be suitable for digital radiography (DR) adopting a precise sawing process. For systematic evaluation of the grid performance, we prepared several sample grids having different grid frequencies (4.0–8.5 lines/mm) and grid ratios (5:1–10:1) and established a well-controlled test condition based upon the IEC standard. In this paper, we presented the performance characteristics of the carbon-interspaced grids in terms of the transmission of primary radiation ( T p ), the transmission of scattered radiation ( T s ), the transmission of total radiation ( T t ), contrast improvement factor ( C if ), and Bucky factor ( B ). We also described the grid line artifact, known as a moiré pattern, which may be the most critical problem to be solved for the successful grid use in DR. We examined the factors that affect the moiré pattern by integrating the sample grids with an a-Se based flat panel detector having a 139 μm×139 μm pixel size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.