Abstract
We show that the optical output of a temperature and current-tuned Fabry-Perót diode laser system, with no external optical feedback and in which the frequency is locked to Doppler-free hyperfine resonances of the 87Rb D2 line, can achieve high frequency stability and accuracy. Experimental results are presented for the spectral linewidth, frequency stability, and frequency accuracy of the source. Although our optical source is limited by a short-term spectral linewidth greater than 2 MHz, beat signal measurements from two such sources demonstrate a frequency stability of 1.1 kHz, or minimum Allan deviation of 4×10-12, at an integration time τ=15 s and with a frequency accuracy of 60 kHz at τ=300 s. We demonstrate the use of the optical source for the precision measurement of hyperfine level frequency spacings in the 5P3∕2 excited state of 87Rb and provide an accurate frequency scale for optical spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.