Abstract

We show that the optical output of a temperature and current-tuned Fabry-Perót diode laser system, with no external optical feedback and in which the frequency is locked to Doppler-free hyperfine resonances of the 87Rb D2 line, can achieve high frequency stability and accuracy. Experimental results are presented for the spectral linewidth, frequency stability, and frequency accuracy of the source. Although our optical source is limited by a short-term spectral linewidth greater than 2 MHz, beat signal measurements from two such sources demonstrate a frequency stability of 1.1 kHz, or minimum Allan deviation of 4×10-12, at an integration time τ=15 s and with a frequency accuracy of 60 kHz at τ=300 s. We demonstrate the use of the optical source for the precision measurement of hyperfine level frequency spacings in the 5P3∕2 excited state of 87Rb and provide an accurate frequency scale for optical spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call