Abstract

We report a stable, high-power source of picosecond pulses in the near-infrared based on intracavity second harmonic generation (SHG) of a MgO:PPLN optical parametric oscillator synchronously pumped at 81 MHz by a mode-locked Yb-fiber laser. By exploiting the large spectral acceptance bandwidth for Type I (oo→e) SHG in β-BaB2O4 and a 5 mm crystal, we have generated picosecond pulses over 752-860 nm spectral range under minimal angle tuning, with as much as 3.5 W of output power at 778 nm and >2 W over 73% of the tuning range, in good beam quality with TEM00 spatial profile and M2<1.4. The SHG output pulses have durations of 15.2 ps, with a spectral bandwidth of ∼3.4 nm at 784 nm. In addition, the oscillator simultaneously provides a signal power of >1 W over 1505-1721 nm (25 THz) and idler power >1.8 W over 2787-3630 nm (25 THz), corresponding to a total (signal plus idler) tuning range of 1059 nm. The SHG, signal, and idler output exhibit passive long-term power stability better than 1.6%, 1.3%, and 1.6% rms, respectively, over 14 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.