Abstract

Based on experimental results which reveal that the contact of Indium-Zinc-Oxide (IZO) and IZO/Ti to <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -GaN layer is Schottky and ohmic, respectively, localized Ti deposition associated with a transparent IZO layer is proposed to serve as both current blocking and current spreading layer. In addition, an anisotropic mesa etching on the surface layer ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -GaN) of regular Vertical-Conducting Metal-substrate GaN-based Light-Emitting Diodes (VM-LEDs) is also proposed to further decrease the resistance difference between the outside path and the inner one. The effectiveness of the proposed schemes were verified by a two-dimensional device simulator (ISE-TCAD), which indicates that significant immune of current crowding under cathode contact pad would be possible once an optimal combination of the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -GaN layer etching depth and width, IZO thickness, and Schottky blocking width has been achieved. In experiments, 40-mil LEDs with an anisotropic mesa etching of 400 μm in width and 2 μm in depth, 200 mum in Schottky blocking width, and a 300-nm-thick IZO layer have been successfully fabricated. Typical improvement in light output power by about 25% at an injection current of 350 mA as compared to the regular VM-LEDs has been obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.