Abstract

A 980 nm bottom-emitting vertical-cavity surface-emitting laser (VCSEL) with a p-contact diameter is reported to achieve high power and good beam quality. A numerical simulation is conducted on the current spreading in a VCSEL with oxidation between the active region and the p-type distributed Bragg reflector. It is found that, for a particular oxide aperture diameter, somewhat homogeneous current distribution can be achieved for a VCSEL with an optimized p-contact diameter. The far-field divergence angle from a 600 microm diameter VCSEL is suppressed from 30 degrees to 15 degrees, and no strong sidelobe is observed in the far-field pattern by using the optimized p-contact diameter. There is a slight rise in threshold and optical output power that is due to the p-contact optimization. By improving the device packaging method, the maximum optical output power of the device is 2.01 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.