Abstract

The compact, high-power, broadband continuum sources are extremely needed for developing portable instruments for various applications such as optical coherence tomography, high-resolution spectroscopy, and so on. Here, we develop a compact high-power, ultra-broadband supercontinuum (SC) light source in a single-mode fiber (SMF) pumped with a Yb:YAG/Cr4+:YAG passively Q-switched microchip laser oscillating at 1030 nm. The spectral bandwidth of the SC light is over 1150 nm covering from 600 to 1750 nm. The maximum average output power is 181.8 mW at an input pump power of 880 mW. The optical efficiency is 20.6%, and the net conversion efficiency is as high as 51.6% with respect to the pump power coupled into the fiber. The ultra-broadband spectrum of the SC generated in the SMF is caused by the intermodal four-wave mixing (IMFWM) and cascade stimulated Raman scattering effects. Various transverse modes have been experimentally observed in SC beam generated in the SMF. Wavelength-dependent transverse modes propagating in the SMF participating in the IMFWM process dramatically expand the spectral range in the visible region. The experimental results are basically consistent with the theoretical simulations of broadband SC generated in the SMF through the IMFWM process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call