Abstract

High-power silicon-based photodiodes are key components in many silicon photonics systems, such as microwave photonics systems, an optical interconnection system with multi-level modulation formats, etc. Usually, the saturation power of the silicon-germanium (Si-Ge) photodiode is limited by the space-charge screening (SCS) effect and the feasibility of the fabrication process. Here, we propose a high saturation power Si-Ge photodiode assisted by doping regulation. Through alleviating the SCS effect of the photodiode, we successfully demonstrate an 85.7% improvement on the saturation power and a 57% improvement on the -1 dB compression photocurrent. The proposed high-power Si-Ge photodiode requires no specific fabrication process and will promote the low-cost integrated silicon photonics systems for more applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.