Abstract

We demonstrate for the first time a high-power P-i-N diode with local lifetime control using palladium (Pd) diffusion. Low-temperature (600/spl deg/C-700/spl deg/C) diffusion of Pd is stimulated by radiation defects resulting from alpha-particle irradiation ( <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> He/sup 2+/: 10 MeV, 10/sup 12/ cm/sup -2/). The region of maximal radiation damage of Gaussian shape is decorated by substitutional Pd after diffusion from a palladium silicide surface layer through the P/sup +/--P region into the N-base close to the anode junction. Significantly lower leakage current compared to that of standard <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> He/sup 2+/ irradiation and very good ruggedness under fast recovery (di/dt/spl ap/500 A/μs, V/sub R//spl ap/2 kV) is demonstrated for Pd diffusion at 600/spl deg/C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call