Abstract

A scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. With use of an ultra-low absorption transparent conductor in the LC SLM and materials with better physical properties, the laser power handling capability of the device was improved. The experimental results are reported regarding a LC SLM functioning as a wavefront control device under illumination of a kilo-watt laser source. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume, and the zero-coupling between pixels enables a fast feed-forward wavefront correction scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.