Abstract

Recent experiments indicate that controlling the propagation of high-power laser beams through millimeter long and low-density plasmas still remains challenging. In such plasma conditions, it is equally important to consider the impact of the plasma on laser propagation and laser properties, and the impact of the laser on plasma conditions. These complex phenomena are still difficult to implement in fluid models owing to the highly non-linear physics at play. Yet, electromagnetic fields prove to be good signatures of most of these low frequency phenomena. In particular, local pressure gradients and electron transport can be inferred from the electric fields. Such in-depth plasma characterization can be achieved through proton deflectometry. For that purpose, we have developed a three-dimensional simulation capability in order to compute protons’ trajectories modified by the local electric fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.