Abstract
Here, we compare the ionization region model (IRM) against experimental measurements of particle densities and electron temperature in a high power impulse magnetron sputtering discharge with a tungsten target. The semi-empirical model provides volume-averaged temporal variations of the various species densities as well as the electron energy for a particular cathode target material, when given the measured discharge current and voltage waveforms. The model results are compared to the temporal evolution of the electron density and the electron temperature determined by Thomson scattering measurements and the temporal evolution of the relative neutral and ion densities determined by optical emission spectrometry. While the model underestimates the electron density and overestimates the electron temperature, the temporal trends of the species densities and the electron temperature are well captured by the IRM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.