Abstract

A three-phase AC/DC/AC converter is presented with a power factor preregulator to improve the power quality in the input side and a pseudorandom noise generator to reduce the emitted acoustic noise and the mechanical vibration for an induction motor drive. The space vector modulation with hysteresis current control for a voltage source rectifier is adopted to simplify the hardware circuit. A control scheme is presented to drive the supply current following the reference current. The amplitude of reference current for the pulsewidth modulation (PWM) rectifier is derived from the DC bus voltage regulator and the estimated output power. Random switching frequency technique for a three-phase PWM inverter system to reduce the annoying tonal noise and resonant vibration from an induction motor is described. By randomly varying the instantaneous PWM switching frequency from one cycle to the next, the frequency distribution of harmonics is spread in a wide frequency range. The major advantage for using such a strategy is the nonrepetitive output spectral characteristic that results in reduction of torque pulsations in motor drive systems. The nearly unity power factor at the three-phase rectifier and the absence of acoustic noise concentrated at the specific tones which is usually present with conventional sinusoidal modulation are verified by the experimental tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.