Abstract
Solid-state lasers emitting in the 1.5–1.6 μm spectral range are very promising for eye-safe laser range finding, ophthalmology, fiber-optic communication systems, and optical location. The aim of this work is the investigation of spectrosposcopic and laser properties of gain medium based on borate crystal for abovementioned lasers.Spectroscopic and laser properties of Er,Yb:YAl3(BO3)4 crystals with different concentrations of dopants were investigated. Polarized absorption and emission cross-section spectra were determined. The ytterbium- erbium energy transfer efficiency was estimated. The maximal energy transfer efficiency up to 97 % was obtained for Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal.The laser operation of heavily doped crystals with erbium concentration up to 4 аt.% (2.2^1020 cm^3) was realized. By using of Er(2 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal continuous- wave (CW) output power of 1.6 W was obtained at 1522 nm with slope efficiency of 32 %. By using of Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal peak output power up to 2.2 W with slope efficiency of 40 % was realized in quasi-continuous-wave regime of operation. The spatial profile of the output beam was close to TEM00 mode with M2 < 1.2 during all laser experiments.Based on the obtained results, it can be concluded that Er,Yb:YAl3(BO3)4 crystals are promising active media for lasers emitting in the spectral range of 1.5-1.6 pm for the usage in laser rangefinder and laser- induced breakdown spectroscopy systems, and LIDARs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.