Abstract

As micropower devices, microfluidic fuel cells (MFCs) have gained much attention due to their simple configurations and high power densities. MFCs exploit the parallel laminar flowing of two electrolytes in a microchannel with a characteristic length from 1 to 1000 μm to separate the anolyte and catholyte, without the proton exchange membranes in the traditional fuel cells. These membrane-less configurations can avoid a series of technical problems related to the membranes. To achieve an MFC with high power density and low cost, we constructed the direct formate MFCs with two catalyst-free oxidants containing FeCl3 and Na2S2O8 solutions, respectively, and compared the performance of the two MFCs. Due to Na2S2O8 being an oxidant with some distinctive advantages, including its high theoretical potential, high solubility of itself and its reduction product, and environmental friendliness, the Na2S2O8-based MFC showed a higher open-circuit voltage (>2.0 V) and better performance. Then, we studied the effects of oxidant concentrations, flow rates, and fuel concentrations on the performance of the Na2S2O8-based MFC. The results showed the optimum performance of the Na2S2O8-based MFC with the peak power density of 214.95 mW cm–2 and the limiting current density of 700.13 mA cm–2 under the conditions of 1.5 M HCOONa, 2 M Na2S2O8, and 300 μL min–1 at an anolyte/catholyte flow ratio of 2:1. The performance was also the highest among the direct formate MFCs reported up to now. Moreover, the Na2S2O8-based MFC could stably discharge for about 4 h under a constant voltage. All of the results demonstrated that Na2S2O8 was a suitable oxidant and that the Na2S2O8-based MFC could realize the goals of high power density and low cost for the actual application of MFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call