Abstract

A 3.7-GHz 700-kW klystron in continuous-wave (CW) operation has been developed to upgrade the lower hybrid RF plasma heating power in a tokamak up to 10 MW. The klystron is equipped with a diode gun, a five-cavity RF structure, two BeO-disk RF windows, and a large-size X-ray-shielded hypervapotron collector. The output power is recombined in a four-port junction which we also developed. The tube is designed to deliver 620-kW CW RF power with a mismatched load (VSWR = 1.4) and 700-kW CW with a matched load. Several prototypes have been built with successive design improvements. The major improvement was to change one single RF output into two RF outputs. The most recently built prototype meets all design specifications at 73.1 kV and 20.7 A, with an efficiency of 47% on a matched load and 40% with a 1.4 : 1 VSWR load, worst case phase. The power losses dissipated in the body have been measured as low as 17 kW, which corresponds to the RF heating and implies low beam interception. The measured temperatures of the output cavity noses and collector wall have been kept below 130degC and 200degC, respectively, which results in large thermal margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.