Abstract

We report on a novel experimental scheme to generate continuous-wave (cw), high-power, and higher-order optical vortices tunable across a mid-IR wavelength range. Using a cw, two-crystal, singly resonant optical parametric oscillator (T-SRO) and pumping one of the crystals with a Gaussian beam and the other crystal with optical vortices of orders lp=1-6, we have directly transferred the vortices at near-IR to the mid-IR wavelength range. The idler vortices of orders li=1-6 are tunable across 2276-3576nm with a maximum output power of 6.8W at an order of li=1 for the pump power of 25W, corresponding to a near-IR vortex to mid-IR vortex conversion efficiency as high as 27.2%. Unlike the SROs generating optical vortices restricted to lower orders (≤2) due to the elevated operation threshold of SROs with higher-order pump vortices, here the coherent energy coupling between the resonant signals of two crystals of T-SRO facilitates the transfer of pump vortex of any order to the idler wavelength without a stringent operation threshold condition. The generic experimental scheme can be used in any wavelength range across the electromagnetic spectrum and in all timescales, from cw to ultrafast regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call