Abstract

AbstractPotassium‐ion batteries (KIBs) are one of the potential candidates for large‐scale energy storage devices with low cost due to the abundance of potassium resources. However, the development of cathode materials with high capacity and structural stability has been a challenge due to the difficulties of intercalation of the large size of K‐ions into host materials. In this work, H2V3O8 (or V3O7⋅H2O) is reported as a new cathode material for KIBs. It shows reversible potassium‐intercalation behavior with the first discharge capacity of 168 mAh g−1 at 5 mA g−1 and an average discharge voltage of ∼2.5 V (vs. K/K+) in 0.5 M KPF6 in EC/DEC (1:1 v/v). The specific capacity increases up to 181 mAh g−1 for the third cycle and gradually decreases with 75% of the capacity retention after 100 cycles. The chemical formula of the potassiated phase is K1.77H2V3O8. However, scan‐rate dependent cyclic voltammetry and elemental analyses suggest that ∼28% of the capacity comes from the surface K ions on the H2V3O8 particles; thus, the bulk‐intercalated phase can be formulated as K1.27H2V3O8. The crystal structure is stable during the electrochemical cycling, keeping the structural water, confirming that H2V3O8 can be considered as one of the high‐capacity cathode materials for KIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.