Abstract

Oily wastewater not only causes major environmental issues, but also threatens human health. Magnetic nanoparticles (MNPs) are an attractively alternative commercial demulsifiers for their recyclability and high surface area. The wettability and surface charge of magnetic materials are significant factors in oily wastewater treatment. However, the specific influence of surface charge on the demulsification performance has not been rigorously investigated. Herein, a series of MNPs coated by dimethyl-diallyl-ammonium chloride (PDDA) and fulvic acid (FA) (Fe3O4/FA/PDDA) with different surface positive charges were synthesized by adjusting the PDDA concentrations and applied in demulsification of hexadecane-water micro-emulsion. The oil-water separation efficiency (Es) was enhanced gradually with increasing the surface positive charge of demulsifiers. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory confirmed that with increasing surface positive potential, the electrostatic attraction between demulsifiers and oil droplets increased, and thus, Es increased. In addition, the superior Es of Fe3O4/FA MNPs for hexadecyl trimethyl ammonium bromide (CTAB)-stabilized micro-emulsions and Fe3O4/FA/PDDA MNPs for sodium dodecyl sulfate (SDS)-stabilized micro-emulsions further confirmed that electrostatic force was critical in demulsification. The high positively charged Fe3O4/FA/PDDA MNPs can be used as an efficient and recyclable demulsifier for hexadecane-water micro-emulsion. This study provides a theoretical basis for designing demulsifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.