Abstract
Ru-ZnO-g-C3N4 nanocomposite was made using a straightforward ultrasonication method and evaluated for its potential to remove Cd ions from aqueous environments. X-ray diffraction analysis confirms composite production with an average crystalline size of 6.61 nm, while transmission electron microscopy results indicate nanosheet-like nanomaterials with uniform elements distribution. Measurements of N2 adsorption–desorption reveal the creation of a mesoporous structure with a BET surface area of approximately 257 m2/g. Fourier converted infrared reveals vibrational modes for O-H, amino groups, triazine, and Ru-ZnO. In contrast, X-ray photoelectron spectroscopy investigation reveals the presence of the elements Ru, Zn, O, N, and C. Ru-ZnO-g-C3N4 nanocomposite has remarkable adsorption efficiency for aqueous Cd ions, achieving 475.5 mg/g in 18 min. This study reveals that the Ru-ZnO-g-C3N4 nanocomposite may be used as an effective and reusable adsorbent for removing Cd ions during wastewater treatment and, possibly, for eliminating other toxic metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.