Abstract

The (Bi0.5Na0.5)TiO3-BaTiO3 system is a promising Pb-free piezoelectric material to substitute for environmentally undesirable Pb-based ferroelectrics. However, understanding the origin of its high piezoelectric response is a fundamental issue that has remained unclear for decades. Here, complex ions (Li0.5Sm0.5)2+ were introduced to dictate the stability of the electrically-induced ferroelectric state in 0.93(Bi0.5Na0.5)1−x(Li0.5Sm0.5)xTiO3-0.07BaTiO3 relaxor ceramics. The applied electric field induces a phase transition from a non-ergodic state to a ferroelectric state as well as the realignment of ferroelectric domains. The non-ergodic relaxor state with x = 0–0.02 is accompanied by relatively high piezoelectric activity and the strongest piezoelectricity is observed near the crossover from the nonergodic to the ergodic state. The stable␣ferroelectric state cannot survive after the removal of the application electric field for the high doping level due to the enhancement of the random field, which is responsible for the rapid decrease of piezoelectric properties for x > 0.02 compositions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call