Abstract

Polyindole is considered an excellent conducting polymer with interested properties for different applications. A novel polyindole (PIn)/CuInS (CIS)/ZnS quantum dots (QDs) nanocomposite was synthesized via in situ polymerization of PIn in presence of CIS/ZnS QDs. By investigating the effect of CIS/ZnS QDs on optical properties of PIn, it was found that the optical band gaps of PIn, CIS/ZnS QDs, and PIn/CIS/ZnS QDs nanocomposite were 3.24 eV, 4.68 eV and 3.44 eV, respectively. From the luminance spectra, it was observed that emission peaks of PIn at 442 and 468 nm are independent of the excitation wavelength with the highest intensity at excitation wavelength of 380 nm. However, the luminance spectrum of PIn/CIS/ZnS QDs nanocomposite exhibited a quenching peak for CIS/ZnS QDs while the intensity of PIn peak was enhanced. High resolution of transmission electron microscope image of CIS/ZnS QDs revealed nanocrystals with a size of 3–4.5 nm and lattice space of 0.2 nm. PIn/CIS/ZnS QDs nanocomposite as the fluorescent probe was employed for sensing different concentrations of Pb2+ from 5 to 50 ppb. The reaction between PIn/CIS/ZnS QDs and Pb2+ was slightly quenched and fixed after 90 min. The emission peak was reduced gradually with increasing concentration of lead via photo-induced electron transfer or ion exchange mechanism. The value of correlation coefficient (R2) was 0.99, the sensitivity was 0.0041 ppb−1 and limit of detection value was 4.48 ppb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call