Abstract

SiGe/Si heterojunction infrared Schottky-barrier photodetectors (PDs) with different thicknesses (30-60 nm) of amorphous silicon (a-Si:H) cap layers were successfully fabricated. The SiGe and a-Si:H layers were deposited by using ultrahigh-vacuum chemical vapor deposition and plasma-enhanced chemical vapor deposition systems, respectively. In the fabricated PDs, it was observed that the a-Si:H cap layer can effectively suppress a dark current and that the thicker a-Si:H cap can obtain lower dark current. The lowest dark current was observed in the 60-nm a-Si:H capped PDs. When compared with a capless a-Si:H device, the dark current in the 60-nm a-Si:H capped PD was reduced by a magnitude of 317 at 4-V reverse-bias voltage. However, by increasing the a-Si:H thickness, the photocurrent was reduced. Therefore, a compromise in a-Si:H thickness should be chosen. We discovered that the photo-to-dark-current ratio was enhanced by a factor of 850 for 30-nm a-Si:H capped PDs as compared to that of capless a-Si:H devices. Thus, a PD with a higher noise-rejection ability was achieved by merely inserting a thin a-Si:H layer. Possible mechanisms are discussed in detail by the use of spectrum and band diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.