Abstract

This study simulated the high-phosphorus (Pi) environment in patients with chronic kidney disease. Nano-hydroxyapatite (HAP) crystals were used to damage rat aortic smooth muscle cells (A7R5) pre-damaged with different concentrations of Pi solution to compare the differences in HAP-induced calcification in A7R5 cells before and after injury by high-Pi condition. After the A7R5 cells were damaged by high-Pi environment, the following were observed. HAP resulted in declined cell viability and lysosomal integrity, release of lactate dehydrogenase, and increased reactive oxygen species production. The ability of high-Pi damaged cells to internalize HAP crystals declined; crystal adhesion and calcium deposition on the cell surface and alkaline phosphatase activities increased. Osteopontin expression and level of Runt-related transcription factor 2 were increased, and HAP-induced osteogenic transformation was enhanced. High-Pi condition promoted the adhesion of A7R5 cells to nano-HAP crystals and inhibited HAP endocytosis, increasing the risk of calcification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.